Identification of stable models in subspace identification by using regularization

نویسندگان

  • Tony Van Gestel
  • Johan A. K. Suykens
  • Paul Van Dooren
  • Bart De Moor
چکیده

In subspace identification methods, the system matrices are usually estimated by least squares, based on estimated Kalman filter state sequences and the observed inputs and outputs. For a finite number of data points, the estimated system matrix is not guaranteed to be stable, even when the true linear system is known to be stable. In this note, stability is imposed by using regularization. The regularization term used here is the trace of a matrix which involves the dynamical system matrix and a positive (semi) definite weighting matrix. The amount of regularization can be determined from a generalized eigenvalue problem. The data augmentation method of Chui and Maciejowski is obtained by using specific choices for the weighting matrix in the regularization term.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear System Identification Using Hammerstein-Wiener Neural Network and subspace algorithms

Neural networks are applicable in identification systems from input-output data. In this report, we analyze theHammerstein-Wiener models and identify them. TheHammerstein-Wiener systems are the simplest type of block orientednonlinear systems where the linear dynamic block issandwiched in between two static nonlinear blocks, whichappear in many engineering applications; the aim of nonlinearsyst...

متن کامل

Identifying Positive Real Models in Subspace Identification by Using Regularization

This paper deals with the lack of positive realness of identified models that may be encountered in many stochastic subspace identification procedures. Lack of positive realness is an often neglected, but important problem. Subspace identification algorithms fail to return a valid linear model if the so-called covariance model, which is obtained from an intermediate realization step in the subs...

متن کامل

Subspace system identification

We give a general overview of the state-of-the-art in subspace system identification methods. We have restricted ourselves to the most important ideas and developments since the methods appeared in the late eighties. First, the basis of linear subspace identification are summarized. Different algorithms one finds in literature (Such as N4SID, MOESP, CVA) are discussed and put into a unifyin...

متن کامل

Identification of positive real models in subspace identification by using regularization

In time-domain subspace methods for identifying linear-time invariant dynamical systems, the model matrices are typically estimated from least squares, based on estimated Kalman filter state sequences and the observed outputs and/or inputs. It is well known that for an infinite amount of data, this least squares estimate of the system matrices is unbiased, when the system order is correctly est...

متن کامل

Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Automat. Contr.

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2001